Шины персональных компьютеров. Частота шины процессора что это Системная шина с разъемом процессора

Шины персональных компьютеров. Частота шины процессора что это Системная шина с разъемом процессора
Шины персональных компьютеров. Частота шины процессора что это Системная шина с разъемом процессора

Ядро процессора определяется следующими характеристиками:

  • технологический процесс;
  • объем внутреннего кэша L1 и L2;
  • напряжение;
  • теплоотдача.

Перед покупкой центрального процессора, необходимо удостовериться, что выбранная вами материнская плата сможет с ним работать.

Примечательно, что одна линейка процессоров может содержать в себе ЦП, оснащенные разными ядрами. К примеру, в линейке Intel Core i5 имеются процессоры с ядрами Lynnfield, Clarkdale, Arrandale и Sandy Bridge.

Что такое частота шины данных?

Показатель частоты шины данных также обозначается как Front Side Bus (или сокращенно FSB ) .

Шина данных - это набор сигнальных линий, предназначенных для передачи данных в и из процессора.

Частота шины - это тактовая частота, с которой осуществляется обмен данными между процессором и системной шиной.

Следует отметить, что процессоры применяют технологию Quad Pumping. Она дает возможность осуществлять передачу 4 блоков данных за один такт. Эффективная частота шины, при этом, возрастает вчетверо. Следует помнить, что для выше-обозначенных процессоров, в графе "частота шины" указывается увеличенный в 4 раза показатель.

Процессоры компании AMD Athlon 64 и Opteron применяют технологию HyperTransport, которая дает возможность процессору и ОЗУ осуществлять эффективное взаимодействие. Данная система существенно повышает общую производительность.

Что такое тактовая частота процессора?

Тактовая частота процессора - это число операций процессора в секунду. Под операциями, в данном случае, подразумеваются такты. Показатель тактовой частоты пропорционален частоте шины (FSB).

Обычно, чем выше тактовая частота, тем выше производительность. Однако, это правило работает только для моделей процессоров, принадлежащих одной линейке. Почему? В них, на производительность процессора, помимо частоты, оказывают влияние также такие параметры, как:

  • размер кэша второго уровня (L2);
  • присутствие и частота кэша третьего уровня (L3);
  • присутствие специальных инструкций и прочее...

Диапазон тактовой частоты процессора: от 900 до 4200 МГц.

Что такое техпроцесс?

Техпроцесс - это масштаб технологии, определяющей габариты полупроводниковых элементов, составляющих базу внутренних цепей процессора. Цепи образуют соединенные между собой транзисторы.

Пропорциональное сокращение габаритов транзисторов, по мере развития современных технологий, приводит к улучшению характеристик процессоров. К примеру, ядро Willamette, выполненное согласно техпроцессу 0.18 мкм, обладает 42 млн. транзисторов; ядро Prescott с техпроцессом 0.09 мкм, имеет уже 125 млн. транзисторов.

Что такое величина тепловыделения процессора?

Тепловыделение - это показатель отведенной системой охлаждения мощности для обеспечения нормального функционирования процессора. Чем выше значение данного параметра, тем сильнее греется процессор в ходе своей работы.

Данный показатель крайне важно учитывать в случае завышения частоты центрального процессора. Процессор, обладающий низким тепловыделением, охлаждается быстрее, и, соответственно, разогнать его можно сильнее.

Следует также учитывать, что производители процессоров измеряют показатель тепловыделения по-разному. Поэтому сравнение по этой характеристике уместно только в рамках одной компании-производителя.

Диапазон тепловыделения процессора: от 10 до 165 Вт.

Поддержка технологии Virtualization Technology

Virtualization Technology - технология, позволяющая единовременную работу нескольких операционных систем на одном ПК.

Так, благодаря технологии виртуализации, одна компьютерная система может функционировать в виде нескольких виртуальных.

Поддержка технологии SSE4

SSE4 - технология, включающая в себя пакет, состоящий из 54 новых команд, направленных на улучшение показателей производительности процессора в ходе выполнения им различных ресурсоемких задач.

Поддержка технологии SSE3

SSE3 - технология, включающая в себя пакет, состоящий из 13 новых команд. Их введение в новую генерацию направлено на улучшение показателей производительности процессора в части операций потоковой обработки данных.

Поддержка технологии SSE2

SSE2 - технология, включающая в себя пакет команд, дополняющий технологии своих "предшественников": SSE и MMX . Является разработкой корпорации Intel. Включенные в набор команды позволяют добиться существенного прироста производительности в приложениях, оптимизированных под SSE2. Данную технологию поддерживают практически все современные модели процессоров.

Поддержка технологии NX Bit

NX Bit - технология, способная предотвращать внедрение и исполнение вредоносного кода некоторых вирусов.

Поддерживается операционной системой Windows XP SP2, а также всеми 64-битными ОС.

Поддержка технологии HT (Hyper-Threading)

Hyper-Threading - технология, дающая возможность процессору обрабатывать два потока команд параллельно, что существенно повышает эффективность выполнения определенных ресурсоемких приложений, связанных с многозадачностью (редактирование аудио и видео, 3D-моделирование и прочее). Впрочем, в некоторых приложениях применение данной технологии может произвести обратный эффект. Так, технология Hyper-Threading имеет опциональный характер, и в случае необходимости, пользователь может в любое время отключить ее. Автором разработки является компания Intel.

Поддержка технологии AMD64/EM64T

Процессоры, построенные на 64-битной архитектуре, могут работать как с 32-битными приложениями, так и с 64-битными, причем, с абсолютно одинаковой эффективностью.

Примеры линеек x-64 процессоров: AMD Athlon 64, AMD Opteron, Core 2 Duo, Intel Xeon 64 и другие.

Минимальный объем оперативной памяти для процессоров, поддерживающих 64-битную адресацию, составляет 4 Гб . Такие параметры недоступны для традиционных 32-битных процессоров. Чтобы активировать работу 64-битных процессоров, необходимо, чтобы операционная система была под них адаптирована, то есть, тоже имела x64-архитектуру.

Названия реализации 64-битных расширений в процессорах:

  • Intel - EM64T .
Поддержка технологии 3DNow!

3DNow! - технология, вмещающая в себя пакет, состоящий из 21 дополнительной команды для обработки мультимедиа. Главной целью данной технологии является улучшение процесса обработки мультимедийных приложений.

Технология 3DNow! реализована исключительно в процессорах компании AMD.

Что такое объем кэша L3?

Под объемом кэша L3 подразумевается кэш-память третьего уровня.

Оснащаясь быстродействующей системной шиной, кэш-память L3 образует высокоскоростной канал для обмена данными с системной памятью.

Обычно, кэш-памятью L3 комплектуются лишь топовые процессоры и серверные системы. К примеру, такие линейки процессоров, как AMD Opteron, AMD Phenom, AMD Phenom II, Intel Core i3, Intel Core i5, Intel Core i7, Intel Xeon.

Диапазон объема кэша L3: от 0 до 30720 Кб.

Что такое объем кэша L2?

Под объемом кэша L2 подразумевается кэш-память второго уровня.

Кэш-память второго уровня представляет собой блок высокоскоростной памяти, выполняющий аналогичные кэшу L1 функции. Данный блок обладает более низкой скоростью, а также отличается бóльшим объемом.

Если пользователю необходим процессор для выполнения ресурсоемких задач, то следует выбирать модель с большим объемом кэша L2.

В моделях процессоров, обладающих несколькими ядрами, указывается общий объем кэш-памяти второго уровня.

Диапазон объема кэша L2: от 128 до 16384 Кб.

Что такое объем кэша L1?

Под объемом кэша L1 подразумевается кэш-память первого уровня.

Кэш-память первого уровня представляет собой блок высокоскоростной памяти, находящийся непосредственно на ядре процессора. В этот блок производится копирование извлеченных из оперативной памяти данных. Обработка данных из кэша осуществляется в разы быстрее, чем обработка данных из оперативной памяти.

Кэш память дает возможность повысить производительность процессора за счет более высокой скорости обработки данных. Кэш-память первого уровня исчисляется килобайтами, она довольно небольшая. Как правило, "старшие" модели процессоров оснащены кэш-памятью L1 большего объема.

В моделях процессоров, обладающих несколькими ядрами, объем кэш-памяти первого уровня указывается всегда для одного ядра.

Диапазон объемов кэша L1: от 8 до 128 Кб.

Номинальное напряжение питания ядра процессора

Данный параметр обозначает напряжение, необходимое процессору для его работы. Им характеризуется энергопотребление процессора. Этот параметр особенно важно учитывать при выборе процессора для мобильной и нестационарной системы.

Единица измерения - Вольты.

Диапазон напряжения ядра: от 0.45 до 1.75 В.

Максимальная рабочая температура

Это показатель максимально допустимой температуры поверхности процессора, при которой возможна его работа. Температура поверхности зависит от загруженности процессора, а также от качества теплоотвода.

  • При нормальном охлаждении, температура процессора находится в диапазоне 25-40°C (холостой режим);
  • При большой загруженности температура может достигать 60-70 °C.

Процессоры с высокой рабочей температурой требуют установки мощных систем охлаждения.

Диапазон максимальной рабочей температуры процессора: от 54.8 до 105.0 °C.

Что такое линейка процессора?

Каждый процессор относится к определенному модельному ряду или линейке. В рамках одной линейки, процессоры могут серьезно отличаться друг от друга по целому ряду характеристик. Каждый производитель имеет линейку недорогих процессоров. Скажем, у Intel это Celeron и Core Solo; у AMD - Sempron .

Процессоры бюджетных линеек, в отличие от более дорогих "собратьев", не имеют некоторых функций, а их параметры - обладают меньшими значениями. Так, в недорогих процессорах может быть существенно уменьшенная кэш-память, более того, она может и вовсе отсутствовать.

Бюджетные линейки процессоров подходят для офисных компьютеров, не предполагающих работы с большими нагрузками и масштабными задачами. Более ресурсоемкие задачи (обработка видео /аудио) требуют установки "старших" линеек. К примеру, Core 2 Duo, Core 2 Quad, Core i3, Core i5, Core i7, Phenom X3, Phenom X4, Phenom II X4, Phenom II X6 и т.д.

Серверные материнские платы, обычно, используют специализированные линейки процессоров: Opteron , Xeon и им подобные.

Что такое коэффициент умножения процессора?

На основании коэффициента умножения процессора осуществляется подсчет итоговой тактовой частоты его работы.

Тактовая частота процессора = частота шины (FSB) * коэффициент умножения.

К примеру, частота шины (FSB) составляет 533 Mhz, а коэффициент умножения - 4.5. Так, 533*4.5= 2398,5 Mгц. Получаем тактовую частоту работы процессора.

В большинстве современных процессоров этот параметр заблокирован на уровне ядра, он не подлежит изменению.

Следует также отметить, что процессоры типа Intel Pentium 4, Pentium M, Pentium D, Pentium EE, Xeon, Core и Core 2 применяют технологию Quad Pumping (передача 4-х блоков данных за один такт). В данном случае, эффективная частота шины возрастает, соответственно, в 4 раза. В поле "Частота шины", в случае с выше-приведенными процессорами, указывается увеличенная в четыре раза частота шины. Чтобы получить показатель физической частоты шины, необходимо эффективную частоту разделить на 4.

Диапазон коэффициента умножения: от 6.0 до 37.0.

Число ядер в процессоре

Современные технологии производства процессоров позволяют размещать несколько ядер в одном корпусе. Чем больше ядер имеет процессор, тем выше его производительность. К примеру, в серии Core 2 Duo применяются 2-ядерные процессоры, а в линейке Core 2 Quad - 4-ядерные.

Диапазон количества ядер в процессоре: от 1 до 16.

Что такое Socket (сокет)?

Каждая материнская плата оснащена разъемом определенного типа, предназначенным для установки процессора. Этот разъем и называется сокетом. Обычно, тип сокета определяется числом ножек, а также компанией-производителем процессора. Различные сокеты соответствуют различным типам процессоров.

В настоящее время, производители процессоров применяют следующие типы сокетов:

Intel

  • LGA1155;
  • LGA2011.

AMD

  • AM3+;
  • FM1.
Температура процессора постепенно растет со временем.Какие меры наиболее эффективны для снижения температуры процессора?

В зависимости от условий эксплуатации техники, часто возникает ситуация что радиаторы и забиваются пылью, грязью, термоинтерфейс изменяет свои свойства теплопроводности, крепления радиатора слабеют, иногда не равномерно.

В этом случае, необходимо, при подозрении на перегрев, снять систему охлаждения, отчистить радиаторы, поправить крепления, заменить термопасту.Также снизить температуру в корпусе, сменить вентилятор процессорного кулера на более мощный или, если конструкция позволяет, сменить кулер, добавить корпусный кулер на вдув и\или на выдув.

Как определить, что термозащита в действии?

Существует два способа. Первый - программный. Запускаем TAT (Intel Thermal Analysis Tool) для процессоров семейства Core, RMClock для всех остальных и следите за сообщениями в TAT и за графиком во второй. Как только сработает термозащита, TAT выдаст предупреждение, а в мониторинге RMClock появится график CPU Throttle.

Второй способ - опосредованный. Основан на том, что включение термозащиты, особенно
троттлинга, обязательно сопровождается сильным падением производительности процессора.

Температура первого ядра в Х-ядерном процессоре выше на несколько °C, по сравнению со вторым. Чем это объяснить?

Это нормально. Ядро, использующееся в первую очередь, загружено типично больше, поэтому
и нагревается соответственно больше.

Компьютер состоит из множества различных компонентов, это центральный процессор, память, жесткий диск, а также огромное количество дополнительных и внешних устройств, таких как экран, мышка клавиатура, подключаемые флешки и так далее. Всем этим должен управлять процессор, передавать и получать данные, отправлять сигналы, изменять состояние.

Для реализации этого взаимодействия все устройства компьютера связаны между собой и с процессором через шины. Шина - это общий путь, по которому информация передается от одного компонента к другому. В этой статье мы рассмотрим основные шины компьютера, их типы, а также для соединения каких устройств они используются и зачем это нужно.

Как я уже сказал - шина - это устройство, которое позволяет связать между собой несколько компонентов компьютера. Но к одной шине могут быть подключены несколько устройств и у каждой шины есть свой набор слотов для подключения кабелей или карт.

Фактически, шина - это набор электрических проводов, собранных в пучок, среди них есть провода питания, а также сигнальные провода для передачи данных. Шины также могут быть сделаны не в виде внешних проводов, а вмонтированы в схему материнской платы.

По способу передачи данных шины делятся на последовательные и параллельные. Последовательные шины передают данные по одному проводнику, один бит за один раз, в параллельных шинах передача данных разделена между несколькими проводниками и поэтому можно передать большее количество данных.

Виды системных шин

Все шины компьютера можно разделить за их предназначением на несколько типов. Вот они:

  • Шины данных - все шины, которые используются для передачи данных между процессором компьютера и периферией. Для передачи могут использоваться как последовательный, так и параллельный методы, можно передавать от одного до восьми бит за один раз. По размеру данных, которые можно передать за один раз такие шины делятся на 8, 16, 32 и даже 64 битные;
  • Адресные шины - связаны с определенными участками процессора и позволяют записывать и читать данные из оперативной памяти;
  • Шины питания - эти шины питают электричеством различные, подключенные к ним устройства;
  • Шина таймера - эта шина передает системный тактовый сигнал для синхронизации периферийных устройств, подключенных к компьютеру;
  • Шина расширений - позволяет подключать дополнительные компоненты, такие как звуковые или ТВ карты;

В то же время, все шины можно разделить на два типа. Это системные шины или внутренние шины компьютера, с помощью которых процессор соединяется с основными компонентами компьютера на материнской плате, такими как память. Второй вид - это шины ввода/вывода, которые предназначены для подключения различных периферийных устройств. Эти шины подключаются к системной шине через мост, который реализован в виде микросхем процессора.

Также к шинам ввода/вывода подключается шина расширений. Именно к этим шинам подключаются такие компоненты компьютера, как сетевая карта, видеокарта, звуковая карта, жесткий диск и другие и их мы более подробно рассмотрим в этой статье.

Вот наиболее распространенные типы шин в компьютере для расширений:

  • ISA - Industry Standard Architecture;
  • EISA - Extended Industry Standard Architecture;
  • MCA - Micro Channel Architecture;
  • VESA - Video Electronics Standards Association;
  • PCI - Peripheral Component Interconnect;
  • PCI-E - Peripheral Component Interconnect Express;
  • PCMCIA - Personal Computer Memory Card Industry Association (также известна как PC bus);
  • AGP - Accelerated Graphics Port;
  • SCSI - Small Computer Systems Interface.

А теперь давайте более подробно разберем все эти шины персональных компьютеров.

Шина ISA

Раньше это был наиболее распространенный тип шины расширения. Он был разработан компанией IBM для использования в компьютере IBM PC-XT. Эта шина имела разрядность 8 бит. Это значит что можно было передавать 8 бит или один байт за один раз. Шина работала с тактовой частотой 4,77 МГц.

Для процессора 80286 на базе IBM PC-AT была сделана модификация конструкции шины, и теперь она могла передавать 16 бит данных за раз. Иногда 16 битную версию шины ISA называют AT.

Из других усовершенствований этой шины можно отметить использование 24 адресных линий, что позволяло адресовать 16 мегабайт памяти. Эта шина имела обратную совместимость с 8 битным вариантом, поэтому здесь можно было использовать все старые карты. Первая версия шины работала на частоте процессора - 4,77 МГц, во второй реализации частота была увеличена до 8 МГц.

Шина MCA

Компания IBM разработала эту шину в качестве замены для ISA, для компьютера PS/2, который вышел в 1987 году. Шина получила еще больше усовершенствований по сравнению с ISA. Например, была увеличена частота до 10 МГц, а это привело к увеличению скорости, а также шина могла передавать 16 или 32 бит данных за раз.

Также была добавлена технология Bus Mastering. На плате каждого расширения помещался мини-процессор, эти процессоры контролировали большую часть процессов передачи данных освобождая ресурсы основного процессора.

Одним из преимуществ этой шины было то, что подключаемые устройства имели свое программное обеспечение, а это значит что требовалось минимальное вмешательство пользователя для настройки. Шина MCA уже не поддерживала карты ISA и IBM решила брать деньги от других производителей за использование этой технологии, это сделало ее непопулярной с сейчас она нигде не используется.

Шина EISA

Эта шина была разработана группой производителей в качестве альтернативы для MCA. Шина была приспособлена для передачи данных по 32 битному каналу с возможностью доступа к 4 Гб памяти. Подобно MCA для каждой карты использовался микропроцессор, и была возможность установить драйвера с помощью диска. Но шина все еще работала на частоте 8 МГц для поддержки карт ISA.

Слоты EISA в два раза глубже чем ISA, если вставляется карта ISA, то она использует только верхний ряд разъемов, а EISA использует все разъемы. Карты EISA были дорогими и использовались обычно на серверах.

Шина VESA

Шина VESA была разработана для стандартизации способов передачи видеосигнала и решить проблему попыток каждого производителя придумать свою шину.

Шина VESA имеет 32 битный канал передачи данных и может работать на частоте 25 и 33 МГц. Она работала на той же тактовой частоте, что и центральный процессор. Но это стало проблемой, частота процессора увеличивается и должна была расти скорость видеокарт, а чем быстрее периферийные устройства, тем они дороже. Из-за этой проблемы шина VESA со временем была заменена на PCI.

Слоты VESA имели дополнительные наборы разъемов, а поэтому сами карты были крупными. Тем не менее сохранялась совместимость с ISA.

Шина PCI

Peripheral Component Interconnect (PCI) - это самая новая разработка в области шин расширений. Она является текущем стандартом для карт расширений персональных компьютеров. Intel разработала эту технологию в 1993 году для процессора Pentium. С помощью этой шины соединяется процессор с памятью и другими периферийными устройствами.

PCI поддерживает передачу 32 и 64 разрядных данных, количество передаваемых данных равно разрядности процессора, 32 битный процессор будет использовать 32 битную шину, а 64 битный - 64 битную. Работает шина на частоте 33 МГц.

В PCI можно использовать технологию Plug and Play (PnP). Все карты PCI поддерживают PnP. Это значит, что пользователь может подключить новую карту, включить компьютер и она будет автоматически распознана и настроена.

Также тут поддерживается управление шиной, есть некоторые возможности обработки данных, поэтому процессор тратит меньше времени на их обработку. Большинство PCI карт работают на напряжении 5 Вольт, но есть карты, которым нужно 3 Вольта.

Шина AGP

Необходимость передачи видео высокого качества с большой скоростью привела к разработке AGP. Accelerated Graphics Port (AGP) подключается к процессору и работает со скоростью шины процессора. Это значит, что видеосигналы будут намного быстрее передаваться на видеокарту для обработки.

AGP использует оперативную память компьютера для хранения 3D изображений. По сути, это дает видеокарте неограниченный объем видеопамяти. Чтобы ускорить передачу данных Intel разработала AGP как прямой путь передачи данных в память. Диапазон скоростей передачи - 264 Мбит до 1,5 Гбит.

PCI-Express

Это модифицированная версия стандарта PCI, которая вышла в 2002 году. Особенность этой шины в том что вместо параллельного подключения всех устройств к шине используется подключение точка-точка, между двумя устройствами. Таких подключений может быть до 16.

Это дает максимальную скорость передачи данных. Также новый стандарт поддерживает горячую замену устройств во время работы компьютера.

PC Card

Шина Personal Computer Memory Card Industry Association (PCICIA) была создана для стандартизации шин передачи данных в портативных компьютерах.

Шина SCSI

Шина SCSI была разработана М. Шугартом и стандартизирована в 1986 году. Эта шина используется для подключения различных устройств для хранения данных, таких как жесткие диски, DVD приводы и так далее, а также принтеры и сканеры. Целью этого стандарта было обеспечить единый интерфейс для управления всеми запоминающими устройствами на максимальной скорости.

Шина USB

Это стандарт внешней шины, который поддерживает скорость передачи данных до 12 Мбит/сек. Один порт USB (Universal Serial Bus) позволяет подключить до 127 периферийных устройств, таких как мыши, модемы, клавиатуры, и другие устройства USB. Также поддерживается горячее удаление и вставка оборудования. На данный момент существуют такие внешние шины компьютера USB, это USB 1.0, USB 2.0, USB 3.0, USB 3.1 и USB Type-C.

USB 1.0 был выпущен в 1996 году и поддерживал скорость передачи данных до 1,5 Мбит/сек. Стандарт USB 1.1 уже поддерживал скорость 12 Мбит/сек для таких устройств, как жесткие диски.

Более новая спецификация - USB 2.0 появилась в 2002 году. Скорость передачи данных выросла до 480 Мбит/сек, а это в 40 раз быстрее чем раньше.

USB 3.0 появился в 2008 году и поднял стандарт скорости еще выше, теперь данные могут передаваться со скоростью 5 Гбит/сек. Также было увеличено количество устройств, которые можно питать от одного порта. USB 3.1 был выпущен в 2013 и тут уже поддерживалась скорость до 10 Гбит/с. Также для этой версии был разработан компактный разъем Type-C, к которому коннектор может подключаться любой стороной.

Шины, как известно, используются для передачи данных от центрального процессора к другим устройствам персонального компьютера. Для того, чтобы согласовать передачу данных к отдельным компонентам, работающих на своей частоте, используется чипсет – набор контроллеров, конструктивно объединенных в Северный и Южный мосты. Северный мост отвечает за обмен информацией с оперативной памятью и видеосистемой, Южный – за функционирование других устройств, подключаемых через соответствующие разъемы – жесткие диски, оптические накопители, а также устройств, находящихся на материнской плате (встроенная аудиосистема, сетевое устройство и др.), и для внешних устройств – клавиатура, мышь и т.д.

Схема системной платы показана ниже.


Для связи процессора с мостами используется шина FSB (Front Side Bus) (наиболее часто используемые в настоящее время Hyper-Transport и SCI), северный мост (иногда называемый системным контроллером) позволяет функционировать наиболее производительным устройствам – видеоадаптеру с помощью шины PCI Express 16x и оперативной памяти через шину памяти. Южный мост обеспечивает работу менее скоростных устройств, подключаемых с помощью карт расширения (аудиокарты, сетевые карты, видеокарты и т.д.) через шины PCI и шину PCI Express, оптических дисководов и жестких дисков через шины ATA (ранее называемых IDE, сейчас имеют название PATA (Parallel ATA) и более современные шины SATA. Еще более медленные устройства подключены к южному мосту через шину LPC – микросхема BIOS, мультиконтроллер для связи с внешними устройствами через последовательные и параллельные порты – клавиатурой, мышью, принтером и др.

Отметим, что в наиболее современных компьютерах функции северного моста выполняет центральный процессор (Intel Nehalem, AMD Sledgehammer).

В компьютере имеется несколько шин, по которым передаются данные. Основной является шина между центральным процессором и Северным мостом. О частоте этой шины можно прочитать в разделе о процессорах. Следующая шина имеется между процессором и оперативной памятью (раньше она была между Северным мостом и оперативной памятью). О ее характеристиках можно узнать из раздела об оперативной памяти. Остаются нерассмотренными шины, которые ведут к картам расширения, которые ниже и опишем.


Шина данных передает непосредственно данные, и чем больше она имеет линий, тем больше данных можно передать за один такт, поэтому число линий постоянно увеличивается. Для передачи данных внутри компьютера используются специальная шина, которая состоит из трех частей, по которым передаются данные, адреса, управляющие сигналы, а также заземление, напряжение и пр. То есть, практически данные передаются по трем частям: шина адреса, шина данных и шина управления. Число линий адресной шины определяет максимальное адресное пространство, куда можно пересылать данные, в основном, в оперативную память. Процессор 8086 имел 20 линий для адреса и мог адресовать 2 20 = 1 мегабайт памяти, в 286 имелось 24 линий (2 24 =16 мегабайт), в 386 – 32 линии (2 32 = 4 гигабайта), современные компьютеры имеют больше 32 линий. То есть, чем больше линий в адресной шине, тем большее количество оперативной памяти поддерживает материнская плата.

Шина данных передает непосредственно данные и чем больше имеет линий, тем больше данных можно передать за один такт. Поэтому число линий постоянно увеличивается, начиная от 8 в первых компьютерах до 32 в системах Pentium.

Через разъемы материнской платы, через вставляемые платы передается информация к/от процессора к внешним устройствам по отношению к материнской плате. Через эти разъемы, естественно, нельзя передавать больше данных, чем это поддерживает внутренняя системная шина, а обычно меньше, в зависимости от типа шины, с которой работают карты расширения. Существует несколько видов шин и, соответственно, разъемов: ISA, EISA, PCI и другие. В последних моделях компьютеров применяется в основном более производительная шина PCI-Е. Но довольно много устройств до сих пор работают с менее производительными шинами. Поэтому в современных материнских платах установлено до 5 различных шин и им соответствующим разъемам.

Рассмотрим более подробно имеющиеся шины.

Шина ISA (Industry Standart Architecture – промышленная стандартная архитектура) появилась давно и была долгое время стандартом. Сейчас она безнадежно устарела. Всего в первых моделях ХТ было 8 линий для данных, что позволяло передавать байт, 20 адресных линий для адресации до 1 мегабайта памяти, и еще 34 линии для других целей. При переходе на модель РС АТ были добавлены еще 36 линий, среди них 8 для данных и 4 для адреса. 8-разрядная использовалась еще в PC XT, имела 62 контакта и позволяла адресовать 1 Мб памяти. Далее появилась 16-разрядная (иногда называемая AT BUS), работает с частотой 8 Мгц со скоростью 16 Мб/сек, позволяет адресовать до 16 Мегабайт. Она состоит из двух частей, первая из них соответствует 8-разрядному слоту шины ISA. Дополнительные 8 разрядов используется для дополнительных адресов ввода/вывода и содержат 36 разъемов (поэтому можно устанавливать 8-разрядные карты в 16-разрядный слот). Однако данное устройство имело тактовую частоту 8,33 Мгц, работало медленно, поэтому появились другие шины.

В настоящее время работает стандарт Plug-an d-Play (PnP), который позволяет при установке нового устройства производить настройку автоматически. При этом система сама определяет вид устройства, адрес порта ввода/вывода, номер прерывания и канал прямого доступа к памяти (DMA). Однако старые шины с трудом позволяют использовать этот стандарт. Так, шина ISA была разработана до появления PnP. Поэтому не все устройства, которые подключаются к этой шине, могут автоматически конфигурироваться. Для выхода из существующей ситуации в системе Windows 9х имеется список устройств, которые можно подключать к компьютеру и которые сами устанавливаются.

Шина ISA имеет следующие ограничения :

Наличие 16-разрядной шины, то есть возможность одновременно посылать два байта;

Максимальная тактовая частота 8,33 МГц;

Отсутствие совместного использования прерываний и каналов DMA для нескольких карт в разных разъемах;

Отсутствие возможности программного отключения карты при конфликте устройств;

Отсутствие программного управления адресов порта ввода/вывода, линий прерываний и каналов прямого доступа.

Для установки карты ISA в шину EISA обычно нужно иметь конфигурационный файл, чтобы запустить утилиту конфигурации шины EISA, которая будет затем распределять ресурсы для карты.

При установке нового устройства нужно, чтобы оно было совместимо физически и логически. Под физическим совмещением подразумевается, что вид разъема, количество контактов у вилки и разъема должны совпадать друг с другом. Логическое совмещение означает, что должны быть четко определены контакты, по которым подается напряжение, где имеется заземление и т.д. При этом сигнал, посылаемый по одному контакту, должен быть идентифицирован принимающим устройством как сигнал пересылки данных, а не как управляющий сигнал. Все это определяется стандартом шины.

Данный стандарт устанавливается, как правило, производителем, который начал массовый выпуск новых устройств. К ним относятся шина ЕIDE для подключения жестких дисков, последовательный и параллельный порт, шина для вывода графических изображений, шина для подключения карт расширений, шина USB, IrDA и пр., которые имеют свои стандарты. Однако на практике часто под понятием шины обозначают шину, к которой подключается плата расширения. Поэтому в этой книге и дальше просто шина будет называться шина PCI, VESA и т.д. В заключение отметим, что первые шины для компьютера назывались Multibus1 . Они выпускались в двух вариантах: PC/XT bus и PC/AT bus и имели 7 линий для аппаратных прерываний. В дальнейшем их вытеснила шина ISA.

Шина МСА (Microchannel - микроканал) появилась в 1987 году, разработана компанией IBM и установлена на компьютере PS/2 ISA. Имеется два вида: 16- и 32-разрядная. 32-разрядная работает с частотой 10 Мгц, со скоростью передачи данных до 20 Мб/с, позволяет адресовать до 4-х гигабайт. Карта расширения могла быть самостоятельно распознана и автоматически конфигурирована компьютером. Основным недостатком является несостыковка с шиной ISA, для которой были разработаны основные устройства, поэтому данная архитектура не нашла широкого распространения.

Шина EISA (Extended ISA - расширенная ISA ) выпущена группой конкурирующих с IBM фирм в 1988 году, так как шина МСА имела закрытое описание и ее могла использовать только компания IBM , также уже устарела. К достоинствам нужно отнести ее совместимость с разъемом ISA за счет расположения разъемов в два слоя, на одном ISA, на втором - EISA. Данная шина 32-разрядная, работает с частотой 8,33 Мгц и дает максимальную скорость передачи данных до 33 Мб/с. Конфигурация устанавливается программно, а не при помощи переключателей.

Чтобы при установке карты, требующей разъем ISA, не были замкнуты два слоя, в разъеме имеется заглушка, которая не позволяет соединиться с нижними контактами. Карта EISA содержит в месте заглушки вырез, который позволяет миновать эту заглушку.

Ввиду дороговизны шина EISA не получила широкого применения в персональных компьютерах, но использовалась в рабочих станциях и серверах.

Шина SCSI (Small Computer System Interface – небольшой системный компьютерный интерфейс) разработан для подключения к шине больших массивов устройств, таких как, жесткие диски, оптические накопители, стримеры, принтеры и пр. Поэтому используется в основном в серверных компьютерах или компьютерах с системой RAID . В домашних компьютерах практически не используется.

SCSI-1 появилась в 1986 году, имела 8 линий для передачи данных, каждое устройство со своим номером, причем адаптеру присвоен номер 7. Остальные устройства имеют номер от 0 до 6, причем номер устанавливается вручную на задней стороне подключаемого устройства или при помощи перемычек. Устройства на шине могут обмениваться между собой информацией без участия адаптера, который в этом случае определяет, кто кому может передавать данные. В то же время, когда информация проходит через него, он принимает в этом участие. Частота шины – 5 МГц, максимальной число подключаемых устройств – 8.

Fast SCSI появилась в 1991 г. и имела 8 линий для передачи данных, а также улучшенный кабельный разъем. Частота шины – 10 МГц, пропускная способность – 10 Мбайт/сек, максимальной число подключаемых устройств – 8.

Wide SCSI имела 16 линий для передачи данных, частоту шины – 10 МГц, пропускную способность – 20 Мбайт/сек, максимальной число подключаемых устройств – 16.

Ultra SCSI появилась в 1992 году, имела 8 линий для передачи данных, частоту шины – 20 МГц, пропускную способность – 20 Мбайт/сек, максимальной число подключаемых устройств – 4-8.

Ultra Wide SCSI имела 16 линий для передачи данных, частоту шины – 20 МГц, пропускную способность – 40 Мбайт/сек, максимальной число подключаемых устройств – 4 - 16.

Ultra 2 SCSI появилась в 1997 году, имела 8 линий для передачи данных, частоту шины – 10 МГц, пропускную способность – 40 Мбайт/сек, максимальной число подключаемых устройств – 8.

Ultra 2 Wide SCSI имела 16 линий для передачи данных, частоту шины – 40 МГц, пропускную способность – 80 Мбайт/сек, максимальной число подключаемых устройств – 16.

Ultra 3 SCSI имела 16 линий для передачи данных, частоту шины – 40 МГц, пропускную способность – 160 Мбайт/сек, максимальной число подключаемых устройств – 16.

Ultra -320 SCSI имела 16 линий для передачи данных, частоту шины – 80 МГц, пропускную способность – 320 Мбайт/сек, максимальной число подключаемых устройств – 16.

Ultra -640 SCSI появился в 2003 году, имела 16 линий для передачи данных, частоту шины – 160 МГц, пропускную способность – 640 Мбайт/сек, максимальной число подключаемых устройств – 16.

В дальнейшем стала развиваться технология SAS (Serial Attached SCSI ) для работы с жесткими дисками и ленточными накопителями. К разъему SAS можно подключить устройства SATA , но не наоборот. Обеспечивает пропускную способность 1.5, 3.0, 6.0 Гбит/сек, ожидается 12 Гбит/сек. Позволяет подключать не только накопители в 3.5 дюйма, но и 2.5 дюйма.

Сам адаптер располагается на материнской плате (как у макинтоша) или на карте расширения. Карта вставляется в слот PCI. У кабеля устройств SCSI компьютеров Мак имеется розетка с разъемом DB25, таким же, как и для параллельного порта. Если его случайно подключить к принтеру или параллельному порту компьютеру или, наоборот, подключить принтерный кабель к устройству SCSI, то могут выгореть микросхемы устройства, к которому они подключены.

При передаче данных по кабелю в нем может возникнуть так называемая «стоячая волна». Чтобы ее не было, применяется специальная заглушка, которая ее гасит. Причем эта заглушка должна быть одна и находиться на конце кабеля. SCSI устройства могут иметь два разъема, один из которых подключается к SCSI шине, а на втором, если он находится на конце кабеля, должна быть заглушка. Если имеется две заглушки на двух устройствах на линии, то они могут мешать друг другу выполнять свою роль.

Шина SCSI несколько по-иному работает с жесткими дисками, нежели другие стандарты, рассматривая диск не как записи, имеющие головки, цилиндры, сектора, а как последовательность логических записей. Получая от центрального процессора информацию для жесткого диска о записи по определенному адресу, адаптер SCSI переводит ее в номер логической записи. В результате, если жесткий диск поставить на место любого SCSI устройства данного адаптера, он будет работать, но если установить в другие адаптеры, то система может не прочитать данные о приведении диска к новой структуре, вся информация на диске будет уничтожена.

Другие устройства (оптические накопители, Iomega) имеют специальные драйверы, при которых можно свободно перемещать их из одной системы в другую. В одном компьютере можно использовать как устройства, подключенные к адаптеру SCSI, так и EIDE одновременно.

Устройства SCSI требуют на конце кабеля, который их соединяет, оконечной нагрузки. Как правило, она на заводе устанавливается на каждое из устройств. Поэтому при установке всех устройств, кроме последнего, нужно их снять. Если устройства, подключаемые к шине SCSI, не поддерживают стандарт Plug & Play, то на них нужно установить при помощи перемычек номер устройства. При этом нужно иметь в виду, что некоторые адаптеры требуют, чтобы устройства с номером 0 и 1 были жесткими дисками.

Шина EIDE предназначается для подключения жестких дисков и оптических накопителей. Также называется как ATA или РАТА (параллельная АТА). Сейчас вытесняется шиной SATA , но, тем не менее, устанавливается и на современных платах, так как к нему можно подключить несколько оптических накопителей (два на каждый разъем). Более подробно это рассмотрено в пункте о жестких дисках. Первые дисководы подключались к компьютеру при помощи карт, на которых находился контроллер диска. Со временем, когда размеры микросхем уменьшились, контроллер стали устанавливать на жестком диске, а контроллер гибких дисков - на материнской плате, поэтому появилась возможность подключать жесткие диски непосредственно через разъем на материнской плате.

Так появилась шина IDE, являющаяся частью шины ISA, которая выведена на специальный разъем (в современных устройствах два разъема) на материнской плате. Сначала был разработан стандарт работы шины под названием АТА, затем ATAPI, который позволял работать с оптическими накопителями. Со временем появился расширенный вариант EIDE со стандартом АТА и в дальнейшем расширение стандарта - ATAPI. Если устройств, подключаемых к разъему EIDE, больше, чем может поддержать компьютер, то требуется установить специальную карту, к которой можно подключить еще несколько устройств.

Первые стандарты использовали жесткие диски, подключавшиеся к плате при помощи специальных карт, на которых размещался контроллер, к шине ISA. Со временем размеры электронных компонентов сократились и они стали устанавливаться на самом жестком диске. Далее диски стали подключаться к плате через соединитель IDE, затем появились два разъема, причем к каждому из разъемов можно было подключить до двух устройств, увеличилось быстродействие, была введена адресация логических блоков, появилась возможность подключения оптических накопителей и все это поддерживалось стандартом EIDE, которая работает с тактовой частотой 8,33 Мгц. Первые устройства работали со стандартом АТА, а затем ATAPI, которые позволили подключать к каналу оптического устройства. Так как по каналу стало возможно передавать за один такт 2 байта одновременно, по этим же линиям скорость передачи достигла 16,6 мбайт/сек. Со временем данные передавались за один такт не только при переходе с высокого напряжения на низкое, но и при переходе с низкого на высокий. Этот стандарт называется Ultra ATA или АТА33, так как позволяет передавать данные со скоростью 33,3 мбайт/сек.

Позже появился стандарт АТА66, в котором увеличилась тактовая частота в канале до 16,7 Мгц и передача данных происходит со скоростью 66,7 мбайт/сек. Кабель для подключения жесткого диска к материнской плате уже другой и содержит 80 проводов вместо 40, как было у предыдущих стандартов. Для подключения устройств к этому кабелю используется 40 проводов. Если подключить устройство, способное работать в АТА33, к этому каналу, или устройство, работающее со стандартом АТА66, к шине АТА33, то устройство будет работать со скоростью 33,3 мбайт/сек. В некоторых платах АТА и его расширение АТАРI позволяет подключать устройства с разными скоростями к одной шине без снижения производительности, но лучше все-таки разделить их на разные каналы.

Кабель для работы со стандартом IDE АТА (AT-Bus) – 16-битный, имеет 40 жил. Кабель XT IDE (8 бит) имеет также 40 жил, но не совместим с АТА, то есть его нельзя использовать для стандарта IDE.

Существует два режима работы канала DMA: Singleword и Multiword. Singleword DMA имеет mode 0, которая работает со скоростью 2.08 мб/сек., mode 1 – 4.16, mode 2 – 8.33, а Multiword DMA имеет mode 0, работающий со скоростью 4.12, mode 1 – 13.3, mode 2 – 16.6 мб/сек. Режим Ultra DMA имеет mode 0, работающий со скоростью – 16.6, mode 1 – 25, 2 – 33.

Кроме того, существуют другие режимы PIO, от 0 и выше, и чем больше номер, тем быстрее работает шина.

Режим АТА-2 работает в PIO Mode 3 multiword DMA Mode 1, поддерживает LBA и CHS. Fast ATA -2 поддерживает Multiword DMA mode 2 и PIO mode 4. АТА3 - это расширение АТА2 с Smart, то есть улучшает потребление питания. АТА/ATAPI-4 - расширение АТА3, имеет Ultra DMA, интерфейс ATAPI. E-IDE поддерживает PIO mode3, с multiword DMA mode 1 и работает с LBA и CHS. Для Ultra DMA нужен 80-жильный кабель с разъемами на 40 контактов с экранированием. Стандарт IDE Mastering позволяет внешнему устройству управлять системной шиной для передачи данных без управления шиной процессора, однако использование такой шины позволяет избавиться от проблем с распределением каналов DMA и ограничения возможностей. В частности, работает с 8- или 16-разрядными данными. Далее появились режимы работы АТА-3 (другое название EIDE ), АТА-4 (частота 16.7, 25, 33.3, другое название Ultra ATA /33), АТА-5 (частота 66 МГц, другое название Ultra ATA /66), АТА-6 (частота 100 МГц, другое название Ultra DMA 100 или UDMA 5 (100)), АТА-7 (частота 133 МГц, другое название Ultra DMA 133 или UDMA 6 (133)), АТА-8 (в развитии).

Шина VESA (Video Electronics Standard s Assoсiation - Ассоциация видео-электронных стандартов или VL -BUS или VLB или VESA local bus ) устарела, первой появилась после шины ISA и имела вчетверо большую скорость, чем ISA, однако она имела некоторые ограничения, в частности, можно было иметь только 2-3 разъема, что, несомненно, уменьшало возможность компьютера. Она представляет собой шину для подключения дисплея, но может быть использована и для других устройств, не является расширением шины ISA (как предыдущие шины). Данная карта напрямую связана с шиной CPU, обходя системную шину. Работает с частотой системной шины до 66 Мгц, использовалась в основном с 486, иногда с 386 компьютерами для видеоплат и жестких дисков. Для Pentium вышла новая версия 2.0, но широкого распространения не получила и в настоящее время практически не используется.

Шина PCI (Peripheral Component Interconnect - соединение периферийных компонентов) также не основана на шине ISA и является вполне самостоятельной, синхронной шиной, разработана компанией Intel, первые версии работали с частотой 33 Мгц, имела 32-битный (или 64-битный) канал и является независимой от центрального процессора, то есть позволяет передавать данные в то время, когда процессор занят другими вычислениями. Теоретическая пропускная способность шины была 133 Мбайт/сек, реально – 80 Мбайт/сек. Эта шина до сих пор имеет широкое распространение.

Шина PCI начала разрабатываться в одно время с шиной ISA, но была закончена позже. У шины PCI больше линий для передачи данных, чем в ISA, и работает она быстрее, чем ISA, причем общее число контактов в разъеме - 124. Шина позволяет выявить ошибки при передаче данных и работает без заглушки кабеля. Кроме того, позволяет при установке конфигурировать подключаемое устройство, то есть при этом компьютер считывает информацию из памяти устройства, где хранятся его основные параметры. Шина может работать не только с определенным набором микросхем на материнской плате, но и с разными устройствами, а также в других видах компьютеров. Кроме того, шина PCI способна использовать совместно прерывания и каналы DMA для разных устройств, что послужило толчком к ее активному внедрению, тогда как шина ISA не могла этого обеспечить.

В разъем шины PCI можно подключать карты: имеющие питание в 5 в (ключ 50, 51 контакт), 3.3В (ключ 12,13) и универсальный (ключ в 12, 13, 50, 51 контактах). 32-битный слот имеет по 62 контакта с каждой стороны, 64-битный – 94. Данная шина позволяет подключить до четырех устройств одновременно, то есть может иметь до четырех разъемов. Для использования большего количества подключаемых устройств применяется специальная микросхема - мост шины, для соединения двух шин. Для устройств промышленного использования имеется стандарт Compact PCI с 8 разъемами.

Пока разрабатывалась шина PCI, развивались и другие отрасли. Возросла тактовая частота внутренней шины до 100, 150 и выше Мгц, увеличилось число линий передачи данных до 64 и продолжает увеличиваться, однако тип шины PCI остался 32-разрядный, но в дальнейшем шина PCI также будет развиваться.

У каждого слота имеется 256 восьмибитных регистра, где содержатся конфигурационные параметры. После включения питания компьютера происходит запрос на конфигурирование шины во время выполнения программы Post, после установки параметров шина может производить операции ввода/вывода. Основное преимущество шины заключается в том, что передача данных происходит без задействования центрального процессора, то есть во время передачи данных от одного устройства к другому центральный процессор может заниматься своими задачами.

Шина PCI 1.0 – 32-разрядная с полосой пропускания 132 Мб/с, с адресацией до 4 гигабайт, а PCI 2.0 - 64-разрядная с полосой пропускания 528 Мб/с. Данная шина приспособлена для технологии Plug&Play, то есть конфигурация плат происходит программно. Для промышленного применения используется стандарт Compact PCI, в котором можно устанавливать до восьми устройств одновременно.

Разрешение конфликтов прерываний в шине PCI обеспечивается за счет того, что шине предоставляется возможность обслуживать обработку каждого из устройств по очереди. Шина PCI обеспечивает 32 линии данных при тактовой частоте 33 Мгц, затем стала 64-разрядной, с тактовой частотой 66 Мгц, причем в новый вариант шины можно вставлять старые платы PCI, а также новую карту в старый разъем. Более новые версии PCI могут увеличивать тактовую частоту и позволяют использовать старые карты расширений для их работы, а также устанавливать новые платы в старые разъемы.

Шина AGP (Accelerated Graphics Port - ускоренный графический порт) разработана компанией Intel в 1997 году специально для работы с видеокартой, при частоте 66 Мгц имеет 32-разрядную шину данных. В настоящее время вытеснена шиной PCI -E . Шина позволяет использовать конвейеризацию обращений, то есть посылать данные в виде непрерывных пакетов. В шине PCI посылается предыдущее данное и адрес для следующего данного, после чего происходят временные задержки, а в шине AGP посылаются несколько адресов и несколько данных один за другим, что уменьшает задержки. Имеется возможность постановки в очередь до 256 запросов и поддерживать две очереди для операций чтения/записи с высоким и низким приоритетом. Сдвоенная передача, то есть передача за один такт двух данных вместо одного, позволяет иметь пропускную способность при частоте 66 Мгц до 528 Мбайт/сек. Позволяет работать на частоте до 100 Мгц и выше с более высокой пропускной способностью. Учетверенная передача позволяет передавать до 1 056 Мбайт/сек.

Для шины AGP существует несколько стандартов: AGP 1Х, 2Х, 4Х, Pro и 8Х. Большинство карт работает со стандартом 4Х и 8Х. В оперативной памяти хранятся не только части изображения, но и графические текстуры. Чтобы видеосистема могла обращаться только к тем областям памяти, которые ее касаются, используется специальная таблица GART (Graphics Address Remapping Table – графическая таблица переадресации адресов), которая определяет эти области памяти.

В шине имеется возможность для видеопроцессора обращаться непосредственно к участкам оперативной памяти, так же как и к видеопамяти, и обрабатывать там текстуры в режиме DiMe (Direct Memory Execution), при этом адресация одинакова. Шина применяется для процессоров Pentium Pro, Pentium II, Pentium III и Pentium IV , но может работать и с процессорами Pentium.

SATA (Serial ATA ) является развитием интерфейса IDE . Ее особенностью является не параллельная передача данных, а последовательная, что хотя и медленнее, но позволяет использовать более высокие частоты без необходимости синхронизации сигнала. Первый стандарт SATA 1.x мог работать на частоте 1.5 ГГц с пропускной способностью 1.2 Гбит/сек (потери за счет передачи большого количества служебной информации). Стандарт 2.х работает на частоте 3 ГГц с пропускной способностью до 2.4 Гбит/сек и стандарт 3.0 на частоте 6.0 Гбит/сек, с пропускной способностью 4.8 Гбит/сек.

Для подключения устройств внутри системного блока, они подключаются к информационному разъему с 7 контактами SATA на материнской плате и 15-разъемным кабелем питания к блоку питания. Существуют устройства, которые позволяют подключить как 15 разъемный кабель, так и 4 разъемный кабель электрического питания Molex . Нужно иметь в виду, что подключение двух кабелей одновременно может сжечь устройство.

Существуют переходники с SATA на IDE и обратно.

eSATA (External SATA – внешний SATA ) предназначен для подключения устройств в режиме горячей замены, то есть, при включенном компьютере. Для того, чтобы можно было это сделать в Windows XP нужно установить драйвер AHCI . Был создан в 2004 году. Имеет разъем, аналогичный SATA , но добавлено экранирование разъема. Поэтому не совместим с разъемом SATA , так как электрически совместимы, а физически нет. Длина кабеля увеличена до 2 метров (1 метр у SATA ).

Существует совмещенный разъем eSATA +USB = Power eSATA , который имеет не только информационные линии, но и линии питания.

PCI - E (или PCI Express или PCI -E ) появилась в 2002 году, использует связь между устройствами типа звезда, позволяет горячую замены устройств. Существует несколько вариантов х1, х2, х4, х8, х12, х16, х32, которые имеют разные разъемы. Чем меньше число, тем меньше контактов и меньше длина разъема. Устройства, которые предназначены для разъема х8 можно подключать в разъемы с числом большим, в данном случае, х12, х16, х32. Это правило применяется для других видов.

Имеется три стандарта. Стандарт 1.0 позволяет передавать в одну сторону для х1 - 2 Гбит/сек, в двух направлениях – 4 Гбит для х1. Пропускная способность других видов можно рассчитать умножив вышеуказанную цифру на число в названии. Например, для х16 пропускная способность в одном направлении составляет 2 х 16 = 32 Гбит/сек. Стандарт 2.0 вышел в 2007 году, имеет пропускную способность в одном направлении (в двух направлениях удвоенную) для х1 – 4 Гбит/сек. Также можно вычислить пропускную способность для других видов. Стандарт 3.0 вышел в 2010 году, позволяет передавать данные со скоростью 8 Гбит/сек. Стандарт 4.0 планируется выпустить к 2015 году и он будет в два раза быстрее, чем 3.0.

В настоящее время на материнских платах наиболее распространены х16 для подключения видео карт и х2 для подключения других устройств.

Шина USB (Universal Serial Bus - универсальная серийная шина) предназначена для подключения периферийных устройств (например, клавиатуры, мыши, джойстика, принтера и других). Ее миссия – подключение различных устройств к работающему компьютеру, например, тостеров, клавиатуры, микроволновой печи, светодиодных светильников, вентиляторов и пр., без необходимости устанавливать переключатели, перемычки, использовать для этого матобеспечение (драйверы) и пр.

Первый стандарт 1.0 появился в 1994 году и имеет режим с низкой пропускной способностью в 1.5 Мбит/сек (Low speed ), с высокой пропускной способностью (Full-speed) до 12 Мбит/сек. Шина USB может работать в двух режимах: в низкоскоростном, в котором работает клавиатура, мышь и т.д., с небольшой скоростью передачи (длина кабеля – 5 метров) и высокоскоростном режиме (длина кабеля – 3 метра), что позволяет работать с максимальной скоростью принтера.

В версии 1.1 были исправлены имеющиеся ошибки.

В стандарте 2.0 появился новый режим (Hi -speed ) c пропускной способностью 25480 Мбит/сек.

В этой шине можно подключать устройства, а компьютер сам определит устройство, которое подключено. При этом имеется возможность не только подключить новое устройство непосредственно к компьютеру, но и к устройству, которое уже подключено к компьютеру. Например, к клавиатуре можно подключить жесткий диск, микрофон и прочие устройства.

Она может использовать концентратор, к которому можно подключить до 127 устройств, поддерживает технологию Plug&Play. При этом шина автоматически присваивает номер для устройств, с которым оно работает. По этим проводам, помимо пересылки данных, передается и электроэнергия, но в небольшом количестве, которого хватает для клавиатуры, но может быть недостаточно для динамиков. Поэтому динамики с большой выходной мощностью требуют отдельного электропитания.

Шина позволяет подключать устройства при включенном компьютере. При подключении они запрашивают главное устройство, которое назначает им адреса, после чего они могут начинать работать. Помимо данных, передается также и электроэнергия, которая служит для питания устройств. Если электроэнергии недостаточно, то устройства можно подключить к дополнительному источнику питания.

Помимо увеличения производительности компьютера, необходимость в модернизации может возникнуть при добавлении новых устройств, для чего требуется соответствующая мощность блока питания, определенное количество и тип разъемов для плат расширения на материнской плате и количество свободных отсеков внутри системного блока. Со временем, при распространении стандарта USB, многие устройства, которые в настоящее время можно будет подключать, расположены не внутри, а вывести их вне системного блока. Таким образом, все больше и больше будет выпускаться внешних устройств и количество разъемов внутри корпуса и отсеков не будет являться проблемой при установке большого количества дополнительных устройств.


Последний стандарт USB 3.0 появился в 2008 году, разъемы совместимы с более ранними стандартами. Однако добавлены еще четыре линии связи в виде двух витых пар и сам кабель стал толще. Разъемы на материнской плате для подключения таких кабелей стали синего цвета, и сами штекеры имеют вставки синего цвета. Таким образом была повышена максимальная скорость передачи данных до 4,8 Гбит в секунду, а скорость передачи выросла до 600 Мбайт в секунду (показатель выше, чем у стандарта USB 2.0 в десять раз). Одновременно повысилась сила пропускаемого тока с 500 мА до 900 мА, что позволяет подключить более энергоёмкие устройства.

Шина PCMCIA используется в ноутбуках и имеет возможность передавать данные по 16 разрядам с адресацией до 64 Мегабайт, с частотой шины 33 мегагерц. Данная шина позволяет подключать разные устройства - жесткие диски, модемы, расширители памяти и др. Многие адаптеры выпускаются по технологии РnР и имеют возможность подключать устройства, не выключая компьютер. Все устройства, подключаемые к данному разъему, имеют пониженное энергопотребление. Шина имеет большие перспективы в будущем и будет устанавливаться и в настольных компьютерах.

Карты PCMCIA, называемыя также РС картой, предназначены для оперативной памяти, модемов, жестких дисков и пр. устройств и бывают трех видов. Они имеют длину и ширину 85х54 мм, а толщина зависит от типа. I тип имеет толщину 3,3 мм, II тип - 5 мм, III тип - 10,5 мм. Карта вставляется в разъем шины ISA, приспособленной для этих карт, которая также называется PCMCIA.

Тип I используется для оперативной памяти, иногда для модемов или сетевой карты, обладает 16 разрядным интерфейсом, толщина 3.3 мм, тип II для этих же устройств, но они потолще (5 мм), в тип III можно установить также жесткий диск (толщина 10,5 мм). В ноутбуке есть отсек, куда можно установить либо одну карту типа I или II, либо в современных моделях - две карты типа I и II или одну типа III.

Для модема на конце карты установлен специальный разъем (X-jack) к которому подключается провод, на другом конце имеется телефонный разъем (RG11) для подключения к телефонной линии. При установке нужно просто вставить карту в отверстие до щелчка, а для того, чтобы вынуть, нужно нажать на рядом расположенную клавишу, и карта выскочит наружу. PC Card AT называется разъем PCMCIA для подключения к блокнотным и стационарным компьютерам.

Card Bus является дальнейшим развитием РС Card, которые передают данные через 32-разрядный интерфейс (карты PCMCIA стали называть РС Card). Шина соединяет карту с системой видеоизображений, что позволяет миновать шину ISA. Эта шина называется Zoomed Video Port – порт увеличенного видео.

IEEE 1394 – разработана Институтом инженеров по электротехнике и электронике (IEEE – Institute of Electrical and Electronics Engineers ) на основе шины компании Apple – FireWire в 1995 году, где номер 1394 обозначает порядковый номер шины, которая разработана данной организацией. Шина позволяет подключить до 16 устройств к одному узлу, при этом каждому устройству присваивается номер, который имеет размерность 16 бит, то есть всего можно адресовать более 64 000 устройств. К каждой шине подключается до 63 устройств, при этом каждому узлу присваивается номер, состоящий из 6 бит. Между собой можно соединить 1023 шины при помощи мостов, каждая из которых имеет разрядность 10 бит, в шине возможна «горячая замена». Каждое новое устройство может быть подключено к любому свободному порту, на одном аппарате их бывает от одного до трех, но возможно - до 27. Единственное исключение заключается в запрете организации петель устройств, так как шина поддерживает древовидную структуру.

Существует три класса устройств с передачей данных 98,3; 196,6 и 339,2 Мбит/сек, или их обычно округляют до 100, 200 и 400 Мбит/сек.по стандарту IEEE 1394a и 800 и 1600 по стандарту IEEE 1394b . По стандарту IEEE 1394.1, разработанному в 2004 году, можно подключать до 64 449 устройств, по стандарту IEEE 1394с, разработанному в 2006 году, можно использовать кабель от сети Ethernet . При этом максимальная длина кабеля составляет до 100 метров, а скорость до 800 Мбит/сек.

Существует три вида разъема: 4 pin – без питания, устанавливается на ноутбуках и видеокамерах, (IEEE 1394a без питания), 6 pin –с дополнительными двумя контактами для питания (IEEE 1394a) и 9 pin с дополнительными контактами для приема и передачи (IEEE 1394 b). Также может быть разъем RJ -45 (IEEE 1394с) .

Если кабель состоит из 6 медных проводов, два на питание, остальные две пары для данных, причем каждая пара экранирована и также экранированы все провода вместе. Так как обеспечивается электропитание от 8 до 40 вольт при токе до 1,5 ампер, то многие устройства не требуют дополнительного подключения к сети. Между двумя устройствами можно установить кабели до 4,5 метров, разъемы шин простые, с возможностью легкого подсоединения.

Шина работает в синхронном и асинхронном режимах. При асинхронной передаче отправляются данные, организованные в пакеты, и при возникновении ошибок передача повторяется, что важно для точной передачи данных. Синхронная передача используется в мультимедиа, для передачи звуковых и видеоданных, но если данные пропали, то это не критично, так как производится передача следующей порции данных.

Шина IEEE 1394 передает данные в цифровом виде, поэтому качество видеоизображения лучше по сравнению с аналоговым. Компьютер может программным образом включать и выключать устройства, подключенные к нему. Шина является независимой от компьютера, то есть возможна её работа при отсутствии компьютера, например, для передачи данных от видеокамеры к видеомагнитофону. Данную шину поддерживает Windows 98 (нужно обновление), Windows МЕ, Windows 2000, Windows ХР и другие.

Для ускорения работы была введена хост-шина (иногда называемая шиной процессора). Предназначена для передачи данных с 64-разрядностью между процессором, оперативной памятью и кэш-памятью 2-го уровня и работает с частотой 50, 60, 66, 75, 100, 133 Мгц, в то время как шина PCI - с половинной частотой (25; 30; 33; 37,5 Мгц).

Эксплуатация . Если одна из старых карт перестала работать, то можно попробовать ее снять и прочистить контакты обыкновенным ластиком, который удалит налеты и окись. После установки проверьте работу платы. Неиспользуемые слоты желательно закрыть специальными крышками.

11 Системная шина, режимы работы системной шины, программируемые системные устройства

Шины – наборы проводников, по которым происходит обмен сигналами между внутренними устройствами компьютера;

Системная шина - предназначена для передачи информации между процессором и остальными электронными компонентами компьютера. По системной шине осуществляется адресация устройств и происходит обмен специальными служебными сигналами. Упрощенно системную шину можно представить как совокупность сигнальных линий, объединенных но назначению (данные, адреса, управление).Системная шина представляет собой набор проводников электрических сигналов и систему протоколов соединения устройств при помощи этих проводников. Тип и характеристики протоколов передачи информации по системной шине определяют скорость передачи информации между отдельными устройствами материнской платы. Системные шины персональных компьютеров стандартизируются как по числу контактов и разрядности (числу проводников, используемых для одновременной передачи данных), так и по протоколам общения устройств через проводники. Системная шина соединяет все устройства компьютера в единое целое и обеспечивает их взаимодействие, взаимоуправление и работу с центральным процессором. В персональных компьютерах используются системные шины стандартов ISA, EISA, VLB и PSI. В наше время теперь используют только шину PCI, конечно еще можно встретить ISA, но она слишком медленная в сравнении с PCI, поэтому её больше не выпускаю.

18 Видеосистема ЭВМ. Принципы работы. Области применения

Видеокарта (видеоадаптер) Совместно с монитором видеокарта образует видеоподсистему персонального компьютера. Видеокарта не всегда была компонентом ПК. На заре развития персональной вычислительной техники в общей области оперативной памяти существовала небольшая выделенная экранная область памяти, в которую процессор заносил данные об изображении. Специальный контроллер экрана считывал данные об яркости отдельных точек экрана из ячеек памяти этой области и в соответствии с ними управлял разверткой горизонтального луча электронной пушки монитора. С переходом от черно-белых мониторов к цветным и с увеличением разрешения экрана (количества точек по вертикали и горизонтали) области видеопамяти стало недостаточно для хранения графических данных, а процессор перестал справляться с построением и обновлением изображения. Тогда и произошло выделение всех операций, связанных с управлением экраном, в отдельный блок, получивший название видеоадаптер. Физически видеоадаптер выполнен в виде отдельной дочерней платы, которая вставляется в один из слотов материнской платы и называется видеокартой. Видеоадаптер взял на себя функции видеоконтроллера, видеопроцессора и видеопамяти. За время существования персональных компьютеров сменилось несколько стандартов видеоадаптеров: МDA (монохромный); СGA (4 цвета); ЕGA (16 цветов);VGА (256 цветов). В настоящее время применяются видеоадаптеры SVGА, обеспечивающие по выбору воспроизведение до 16,7 миллионов цветов с возможностью произвольного выбора разрешения экрана из стандартного ряда значений (640x480, 800x600,1024x768, 1152x864; 1280x1024 точек и далее). Разрешение экрана является одним из важнейших параметров видеоподсистемы. Чем оно выше, тем больше информации можно отобразить на экране, но тем меньше размер каждой отдельной точки и, тем самым, тем меньше видимый размер элементов изображения. Использование завышенного разрешения на мониторе малого размера приводит к тому, что элементы изображения становятся неразборчивыми и работа с документами и программами вызывает утомление органов зрения. Использование заниженного разрешения приводит к тому, что элементы изображения становятся крупными, но на экране их располагается очень мало. Если программа имеет сложную систему управления и большое число экранных элементов, они не полностью помещаются на экране. Это приводит к снижению производительности труда и неэффективной работе. Цветовое разрешение (глубина цвета) определяет количество различных оттенков, которые может принимать отдельная точка экрана. Максимально возможное цветовое разрешение зависит от свойств видеоадаптера и, в первую очередь, от количества установленной на нем видеопамяти. Кроме того, оно зависит и от установленного разрешения экрана. При высоком разрешении экрана на каждую точку изображения приходится отводить меньше места в видеопамяти, так что информация о цветах вынужденно оказывается более ограниченной. Минимальное требование по глубине цвета на сегодняшний день- 256 цветов хотя большинство программ требуют не менее 65 тыс. цветов (режим High Coloг) Наиболее комфортная работа достигается при глубине цвета 16,7 млн. цветов (резких Тruе Соlоr). Работа в полно цветном режиме Тruе Со1оr с высоким экранным разрешением требует значительных размеров видеопамяти. Современные видеоадаптеры способны также выполнять функции обработки изображения, снижая нагрузку на центральный процессор ценой дополнительных затрат видеопамяти. Еще недавно типовым считались видеоадаптеры с объемом памяти 2-4 Мбайт, но уже сегодня обычным считается объем 16 Мбайт. Видеоускорение - одно из свойств видеоадаптера, которое заключается в том, что часть операций по построению изображений может происходить без выполнена математических вычислений в основном процессоре компьютера, а чисто аппаратным путем - преобразованием данных в микросхемах видеоускорителя. Видеоускорители могут входить в состав видеоадаптера (в таких случаях говорят о том, что видео карта обладает функциями аппаратного ускорения), но могут поставляться в виде отдельной платы, устанавливаемой на материнской плате и подключаемого к видеоадаптеру. Различают два типа видео ускорителей - ускорители плоской (2D) и трехмерной (3D) графики. Первые наиболее эффективны для работы с прикладными программами (обычно офисного применения) и оптимизированы для операционной системы Windows, а вторые ориентированы на работу мультимедийных развлекательных программ, в первую очередь компьютерных игр и профессиональных программ обработки трехмерной графики. Обычно в этих случаях используют разные математические принципы автоматизации графических операций, но существуют ускорители, обладающие функциями и двумерного, и трехмерного ускорения.


Неотъемлемой частью (хотя впервые дисплей был реализован на некоторых ЭВМ второго поколения, например, на «МИР-2» - очень интересной во многих отношениях отечественной разработке). Рисунок 3.1 - Шинная архитектура ЭВМ Для получения на экране монитора стабильной картинки ее надо где-то хранить. Для этого и существует видеопамять. Сначала содержимое видеопамяти формируется компьютером, а...

Пользователя. С помощью клавиатуры управляют компьютерной системой, а с помощью монитора получают от нее оклик. Принцип действия. Клавиатура относится к стандартным средствам персонального компьютера. Ее основные функции не нуждаются в поддержке специальными системными программами (драйверами). Необходимое программное обеспечения для начала работы с компьютером уже имеется в микросхеме ПЗУ в...